Calculates ici-kendall-tau

ici_kendallt(x, y, perspective = "local", output = "simple")

Arguments

x

numeric vector

y

numeric vector

perspective

should we consider the "local" or "global" perspective?

Value

kendall tau correlation

Details

Calculates the information-content-informed Kendall-tau correlation measure. This correlation is based on concordant and discordant ranked pairs, like Kendall-tau, but also includes missing values (as NA). Missing values are assumed to be *primarily* due to lack of detection due to instrumental sensitivity, and therefore encode *some* information.

For more details see the ICI-Kendall-tau vignette: vignette("ici-kendalltau", package = "visualizationQualityControl")

Examples

data("grp_cor_data") exp_data = grp_cor_data$data x = exp_data[, 1] y = exp_data[, 2] kendallt(x, y)
#> Error in kendallt(x, y): could not find function "kendallt"
cor(x, y, method = "kendall")
#> [1] 0.6953535
x = sort(rnorm(100)) y = x + 1 y2 = y y2[1:10] = NA kendallt(x, y)
#> Error in kendallt(x, y): could not find function "kendallt"
kendallt(x, y2, "global")
#> Error in kendallt(x, y2, "global"): could not find function "kendallt"
kendallt(x, y2)
#> Error in kendallt(x, y2): could not find function "kendallt"