Calculates kendall-tau, with consideration of missingness providing information. Uses the calculation of tau-b.
Usage
ici_kt(
x,
y,
perspective = "local",
alternative = "two.sided",
continuity = FALSE,
output = "simple"
)
Details
Calculates the information-content-informed Kendall-tau correlation measure. This correlation is based on concordant and discordant ranked pairs, like Kendall-tau, but also includes missing values (as NA). Missing values are assumed to be primarily due to lack of detection due to instrumental sensitivity, and therefore encode some information.
For more details see the ICI-Kendall-tau vignette:
browseVignettes("ICIKendallTau")
Examples
x = sort(rnorm(100))
y = x + 1
y2 = y
y2[1:10] = NA
ici_kt(x, y)
#> tau pvalue tau_max completeness
#> 1.000000e+00 3.480281e-49 1.000000e+00 1.000000e+00
ici_kt(x, y2, "global")
#> tau pvalue tau_max completeness
#> 9.954442e-01 2.228308e-48 9.954442e-01 9.000000e-01
ici_kt(x, y2)
#> tau pvalue tau_max completeness
#> 9.954442e-01 2.228308e-48 9.954442e-01 9.000000e-01