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Abstract: We present a novel, scan-centric method
for characterizing peaks from direct injection multi-scan
Fourier
transform mass spectra of complex samples that utilizes frequency values
derived directly from the
spacing of raw m/z points in spectral
scans. Our peak characterization method utilizes intensity independent
noise
removal and normalization of scan-level data to provide a much
better fit of relative intensity to natural abundance
probabilities for
low abundance isotopologues that are not present in all of the acquired
scans. Moreover, our
method calculates both peak- and scan-specific
statistics incorporated within a series of quality control steps that
are designed to robustly derive peak centers, intensities and intensity
ratios with their scan-level variances. These
cross-scan characterized
peaks are suitable for use in our previously published peak assignment
methodology,
Small Molecule Isotope Resolved Formula Enumeration
(SMIRFE).

Keywords: Fourier-transform mass spectrometry;
orbitrap; scan-centric peak characterization; Fellgett’s
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1. Introduction
Fourier-transform mass spectrometry (FT-MS) provides high performance
in terms of sensitivity, resolution, and
mass accuracy all in one
analytical instrumentation. The combination of these capabilities
provides several
analytical and interpretive improvements: (i) the
ability to resolve distinct isotopologues with identical unit masses
but
different accurate masses [1]; (ii)
enabling multi-element isotopic natural abundance correction for at
least the
lower portion of the detected mass range [2–4]; (iii) improved assignment accuracy [5,6]; and (iv) the detection of
metabolites in
the sub-femtomolar range, when combined with chromatographic separation
[7,8]. In the
metabolomics field, these
improvements permit more complicated, but more informative experimental
designs
such as the use of single and multiple isotope-labeled
precursors in stable isotope-resolved metabolomics (SIRM)
experiments
[9]. These stable isotope tracing
experiments provide a wealth of isotope flux data that is interpretable
in terms of metabolite flux information that is specific to a metabolic
model, pathway, and subcellular location
[1,10–17].

While these advantages of FT-MS are significant, when deployed in a
high-throughput environment, the volume of
data produced requires
automated tools for data reduction, quality control, feature assignment,
and downstream
analyses. Furthermore within the context of direct
infusion, assignment of FT-MS spectral features lacks
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orthogonal sources
of information such as chromatographic retention times, reducing the
reliability of assignment
with most MS assignment software tools.

Within this combined high-throughput with direct injection context,
we previously developed methods to remove
high-peak-density artifacts
[18], annotate peaks with assignments
using SMIRFE [6], and generate lipid
classifications for spectral peak assignments [19]. We applied all of these methods together
in detecting and
assigning differential lipids in non-small-cell lung
carcinoma (NSCLC) [20].

The input peak data in these studies are derived from multi-scan
direct-injection FT-MS data. SMIRFE uses
expected relationships of
relative peak height or intensity to natural abundance probability (NAP)
across multiple
peak pairs to determine the likelihood of an assignment
for the peaks in question. In the Thermo-Fisher Orbitrap
FT-MS
instruments, data are acquired in microscans and scans, where each scan
is an aggregate of multiple
microscans. While these microscan and
subsequent scans are expected to be analytical replicates, spray
instability and temporal delay in automatic gain control pragmatically
break this expectation. Therefore, it is
advantageous to keep the data
at the scan level, so that any given poor quality (i.e., “bad”) scan can
be removed
prior to aggregating the data across scans and generating a
centroided peak m/z and intensity. If the scan level
data are
not processed and aggregated correctly, the final peak intensities in
arbitrary units and centers in m/z will
have high uncertainty
(total variance) [21].

In particular, if peaks are missing in some scans due to low
abundance, the final aggregate peak intensities will not
fit the
expected relative intensity to NAP relationships. Here we describe novel
scan-centric FT-MS metabolomics
data processing methods that better
preserve the expected relative intensity to NAP. In addition, due to the
tendency of increasing point spacing with increasing m/z in
Orbitrap type instruments, we derive a method for
transforming the
m/z data to axial frequency, which has the desirable property
of being equally spaced across the
full spectrum. Finally, we show that
in addition to better preserving the expected intensity to NAP
relationships, our
scan-centric method also results in improved relative
standard deviations, automatic identification of high-peak-
density
artifact peaks, and better separation of samples in a lipidomics data
analysis.

2. Results
2.1. Simplistically Averaged Data Have Bad Relative Intensities
To motivate our solution, we generated peak lists using the peak
exporting functionality in Xcalibur as well as our
scan-centric peak
characterization, and found matching Xcalibur peaks to our assignments.
As an example, in
Figure 1A, we show the Xcalibur calculated intensities
from the simplistically averaged spectrum and theoretical
peak
intensities based on NAP for four peaks matching threonine. As the peak
intensity decreases, the deviation
between the Xcalibur calculated
intensity and its corresponding NAP-based theoretical intensity becomes
larger.
This becomes more apparent when plotting the two sets of
intensities directly against each other, as shown in
Figure 1B.



Figure 1. A: Xcalibur intensities
(black) and theoretical intensities based on relative NAP (red) for ECF
derived
threonine. The 18O isotopologue is shifted by 0.01 m/z
and the NAP peaks by 0.05 m/z to aid visualization.
B:
Theoretical NAP-based-Log10-intensities and Log10
Xcalibur intensities. The red line indicates perfect agreement.

2.2. m/z to Frequency
FT-MS data from the Thermo-Fisher Orbitrap instruments used to
acquire the data does not provide any
information about the raw spectral
frequency data. Outside of the meta-data, it merely contains the
m/z and
intensity values for profile spectra acquired across
multiple scans. However, the spectral frequency can be
calculated by
dividing the midpoint m/z of two adjacent points by their
difference (Figure 2A, red points
representing the midpoint m/z
of two adjacent points, length of red lines representing the difference
between the
two adjacent points). The subsequent adjacent point
differences in frequency are expected to be relatively
constant with
respect to m/z, as shown in Figure 2C, 2D and 2E, in contrast
to the adjacent point differences in
m/z, which are not
constant with respect to m/z. The Thermo-Fisher Fusion
instrument from which most of our
collaborators’ data has been acquired,
at a resolution of 450 K or 500 K depending on the sample, has an
adjacent
frequency point difference mode of 0.5, as shown in Figure 2D.
It is important to note that although the frequency
difference has been
consistent regardless of instrument resolution, we do not know a priori
what it should be, and
the method makes no assumptions about the
frequency difference, but rather calculates the mode of the
frequency
differences from those observed in the data itself. Restricting to those
points that fall into a narrow range
around the mode of frequency
differences (0.49 - 0.51 in this work), a regression model of frequency
to m/z can be
generated (see Methods), with an example shown in
Figure 2F. This regression model seems to fit the known
relationship
between frequency and m/z, where the frequency is related to
 . The actual regression

model used in this work includes terms for m/z, , and  (see Conversion of
m/z to Frequency in
Methods for further description of the
regression model). We did investigate a variety of frequency regression
models to see which one seemed to be the best, as shown in Supplemental
Figure S1 and Table S1.
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Figure 2. A: Intensity vs
m/z for a single peak from a single scan. Red lines denote the
difference between each
adjacent pair of points, and red dots the
m/z midpoint between the pair of points. The difference divided
by the
midpoint is used to derive the spectral frequency values in
B. B plots the intensity vs the
converted frequency
points derived from A. The red
lines denote the difference between adjacent points, which are shown in
the y-axis
of C for this single peak.
D shows a histogram of adjacent point differences for
all points. Note that the y-axis is
Log10 scaled. The differences for
all points in a single scan vs m/z are shown in
E, with those differences that lie
within 0.49 - 0.51
shown in red. F shows the plot of derived spectral
frequency vs m/z, with fitted values from the
linear regression
model in red.

The constant point difference in frequency space is useful, because
some of the subsequent steps in our workflow
use sliding and tiled
windows where it is assumed that the sliding windows contain the same
number of data
points. The m/z point-to-point differences are
not constant, but can be approximated by a LOESS linear model
[22]; however, it is exceedingly difficult to
create a LOESS model with an intercept of 0. In addition, we would also
need to vary the width of sliding windows according to the m/z
difference at a particular m/z based on the LOESS
model.
Frequency-based points suffer from none of these drawbacks, and the
conversion from m/z can be derived
from the raw profile level
data itself, which is incredibly useful.

The m/z to frequency regression models are calculated for
each scan, and the square root term from all scan level
models are
checked for outliers based on the interquartile ranges across all scans
in a sample. While scan specific
models could be used
in the conversion of m/z to frequency, doing so results in
changes to the relative peak
ordering compared to m/z space, as
shown in Figure 3. Therefore, a single model for all scans based on the
scan
with the slope closest to the median of slopes across scans is used
for converting all remaining scan level data.



Figure 3. Peak ordering in m/z compared
with ordering in frequency space when a single m/z to frequency
model
is used or scan specific m/z to frequency models are
used. For a single peak, the scan level peak m/z’s were
extracted, and then frequency values for those m/z generated
using a single common model of m/z to frequency
(Single
Model), or models derived from each scan (Individual
Models). A subset of the peaks ends up out of order
using scan
specific models, implying that a single model should be used across all
the scan level data.

Although the original model is created from only those points that
had frequency point-to-point differences within a
narrow range,
all m/z points are converted to frequency for
subsequent steps in the workflow.

2.3. Sliding Window Density to Remove Noise
In a dataset of this nature, we expect that much of the data are
really just noise, and do not contribute
meaningfully to the analysis.
Furthermore, it is expected that noise is randomly distributed across
the scans.
Therefore, if we slide a window across the data and sum the
number of non-zero points in each window, we expect
that most of the
data we encounter is actually noise. Subsequently, we divide the counts
into tiled regions of a set
size (1000 frequency in this work), and
examine the cumulative 99  percentile of the sliding window
counts within
the tiled region. In Figure 4A, we plotted the non-zero
point intensities from all scans for one tiled region 1000
frequency
wide. The number of non-zero points in the sliding windows across this
region are shown in Figure 4B,
and zoomed closer in 4C. These provide a
measure of the non-zero point density across this region. The blue line
indicates the cumulative 99  percentile for this one region,
and is high, given that it looks like there are some
consistent peaks
across the scans in this region. However, examining the cumulative
99  percentiles across all
the regions of the spectrum, as
shown in the histogram of Figure 4F, a rather large fraction of the
regions have

th

th

th



very low cumulative 99  percentile values, with
a median value of 5, which results in a cutoff value of 8 (ceiling of
5
x 1.5). Keeping only those sliding regions with a non-zero point count
greater than 8 (above the red line in Figure
4B and 4C) results in those
sliding regions shown in 4D, and then the point intensities in 4E. A
non-zero point
density based method for removing potential noise is
desirable because the peak intensities across scans are not
identical,
as shown by the need for normalization (see Normalization of
Scans), and the distribution of RSD
values before and after
normalization (see Changes in Relative Standard
Deviation).

Figure 4. A – E: A single tiled
region 1000 frequency wide. A: Non-zero point
intensities in frequency space
across all scans. B:
Number of non-zero points in sliding regions. The blue line indicates
99  percentile of non-
zero counts in this one region. The
red line is the rounded value of median x 1.5 of 99 
percentiles from F. C:
Zoomed y-axis
of B to show the non-zero counts that are below the
median cutoff. D: Sliding region non-zero
counts that
are greater than the cutoff. E: Non-zero point
intensities across scans in the regions from D. F:
Histogram of the 99  percentile cutoffs from all of the
tiled windows. The red line is the median x 1.5.

Although it appears that only a handful of potential signal regions
are removed between Figure 4A and 4E with a
cutoff of 8 non-zero points
in a sliding region, the number of initial signal regions rapidly
explodes as the
cumulative percentile cutoff is lowered, going from
thousands to tens of thousands of potential peak regions to find
and fit
peaks within, as shown in Figure 5A and 5B for both the amino-acid ECF
and lipid samples, respectively.
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Figure 5. The number of initial regions as a
function of the percentile cutoff used for either the AA ECF
(A) or lipid
(B) samples.

2.4. Peak Characterization Using Quadratic Fit
Although many other types of mass spectrometry data suffer from a
variable and noisy baseline, the scan-level
profile data from the
Thermo-Fisher Fusion have a baseline of 0 due to manipulations in the
Thermo-Fisher
firmware, making the determination of the centroided
values considerably easier. For each region initially created,
the peaks
in each scan within that region can be characterized (i.e.,
centroiding). For centroiding, we use a simple
weighted quadratic model
of log(intensity) to m/z. We add a small constant to enable
using the zero values, and
weight the values by their ratio to the most
intense value, which is normally the value closest to the center of the
peak, helping to ensure that the true centroid is
determined. From the fitted model, we can derive the centroided
center
and the intensity of the peak, as shown in Figure 6.



Figure 6. Log-intensity (A) and intensity (B) of
points for a single peak against frequency. Black points are the
original data points, and the blue point represents the calculated
centroid.

2.5. Breaking Up Initial Regions
With the characterized (centroided) peak data from across scans
within each region, it is then important to
determine if only one or
multiple “peaks” are actually present in the region. Our solution to
this is to define breaks
between actual peaks as a
single frequency bin with zero characterized peaks within it. The
frequency bins are
created from tiled windows that are one frequency
point difference wide. Adjacent non-zero frequency bins are
merged to
comprise a single peak region. Figure 7 shows an example where an
initial region is broken up into two
regions based on the characterized
peak centers.



Figure 7. Splitting a single region into two regions
based on the peaks that are present. A: The full set of
raw
frequency and intensity data across all scans for the region are
shown. Each horizontal trace are the point
intensities in a single scan.
Clearly the region has two separate peaks within it. B:
The peak centroids (frequency
and intensity) for each peak are in black.
The tiled regions (red) are used to quantify the number of peaks.
C: The
number of peaks within each tiled region are
shown as a histogram. Each group of non-zero adjacent regions will
be
merged to form a new peak region.

2.6. Normalization of Scans
Due to differences in how many ions are captured in the trap and the
limited dynamic range of the detector, the
observed peak intensities for
the same analyte vary between scans (see Figure 7A and 7B for example).
Using the
median peak differences between scans, it is possible to
normalize the peak intensities across scans. However,
there are two
issues with these peak intensities across scans: (a) some peak
intensities correlate with the scan
number (i.e., scan acquisition
order); and (b) some peak differences between scans are correlated with
intensity.
The solution to a is to do a two-pass
normalization. After the first pass, the peaks whose intensity is
correlated with
scan order are detected (absolute Pearson correlation
> 0.5). In the second pass, the correlated peaks are
removed, and
normalization is carried out again. Figure 8A shows an example peak
whose intensity across scans
is correlated with scan number. The
solution to b (peak differences correlated with
intensity) is to only use the
most intense peaks, as shown in Figure 8B.
The highlighted peaks in Figure 8B are those with an intensity greater
than 0.7 of the maximum intensity observed in that scan, and at least
visually, their differences are not correlated
with
intensity. If all peaks are used for normalization, a very
different set of normalization factors will be generated
than by using
only the most intense peaks, as shown in Figure 9A and 9B.
Though the two-pass normalization



(doublenorm) and single-pass
normalization using the most intense peaks (singlenorm_int) generate
very similar
normalization factors (Figure 9B), this is expected as they
both use the most intense peaks. However, removing
the scan-correlated
peaks does change the majority of the normalization factors.

Figure 8. A: An example of a peak
whose height across scans is correlated with scan number.
B: The peak
differences to the same peaks in a
reference scan are plotted against peak height. Black: Peaks with a
height <
0.7 of the maximum. Red: Peaks with a height ≥ 0.7 of the
maximum.



Figure 9. A: Histogram of scan
normalization factors using either a single-pass normalization using
all peaks
(singlenorm), single-pass normalization
using peaks with an intensity ≥ 0.7 of the maximum intensity
(singlenorm_int), or the two-pass normalization removing peaks
whose height is correlated with scan and using
the most intense peaks
(doublenorm). B: The difference of the
normalization factors obtained from either
doublenorm or
singlenorm_int compared to singlenorm.

2.7. Mitigation of High Peak Density Artifacts
We have previously described the presence of high peak density (HPD)
artifacts in FT-MS spectra [18]. Ideally,
the
peak characterization procedure should reduce and mitigate their
presence and effect in the resultant reported
peaks. Their presence
should be minimized by removing noise peaks, and removing peak regions
that have
multiple reported peaks from the same scan. However, we expect
they may also present as characterized peaks
that have larger than
expected frequency level standard deviations (FSD) when calculated
across scans. These



peaks can be detected by simply examining the
distribution of FSDs and marking outlier peaks. To verify the
mitigation
of HPD regions, we converted centroided m/z’s from Xcalibur to
frequency values using the previously
calculated regression model for
that sample, measured peak density to detect HPD regions, and compared
them
with the scan-centric peaks and FSD outliers. The Xcalibur peak
density was measured using a sliding window ten
points wide and a stride
of one point.

Figure 10 shows a single HPD site detected in the 2ecf sample, with
the peaks from Xcalibur, as well as various
scan-centric processing and
the peaks from centroiding using MSnbase. From this figure, we can see
that the
point-density-based noise filtering removes a large number of
the peaks in the HPD site, while the FSD outliers
removes further peaks
that may be suspect. After removing the high FSD peaks, the number of
peaks left in the
HPD site are the same or less than those from MSnbase,
and at least in this example, look more likely to be real
peaks compared
to those from MSnbase. Therefore, scan-centric characterization allows
us to keep what are
likely real peaks in HPD sites,
without consideration of peak intensity, and mark peaks that may be
artifactual from
HPD regions.

Figure 10. Comparison of HPD and high FSD sites in
the 2ecf sample. A - E:Peak plots for
various peak
processing modalities in a single HPD site.
A: xcalibur peaks exported from Thermo-Fisher
Xcalibur after
averaging scans. B:
scancentric_00: Scan-centric peak characterization without any
density-based filtering (see
noperc_nonorm in Methods).
C: scancentric_99: Scan-centric peak
characterization using the default point density
filtering (see filtersd
in Methods). D: scancentric_99_lowsd: Same as
scancentric_99, but removing any peaks
marked as having a high
frequency standard deviation. E: msnbase: peak
centroids generated from MSnbase. F:
Scatterplot of peak counts across all of the HPDs detected in the 2ecf
sample against the Xcalibur peak counts.

2.8. Changes in Relative Standard Deviation (RSD)
Each step in the peak characterization either changes the overall
number of peaks coming from each scan (sliding
windows and breaking
initial regions) or the overall intensity of the points within a scan.
Therefore, one way to
quantify any potential improvements in
the characterized peaks is to look at the relative standard deviation
(RSD)
for the characterized scan level peak intensities (calculated as
the standard deviation of peak heights across
scans divided by the mean
peak height) and compare them as each processing step is introduced.
Figure 11
illustrates the peak height RSD distributions for four
different samples. Up to two modes are reported for each



distribution,
where a mode location is only reported if it is ≥ 0.2X the most intense
mode. For samples 1ecf and
2ecf, there is a general shift in the RSD to
the left, going from the bottom processing methods (msnbase_only) to
the
top processing method (filtersd), representing a visually clear
improvement. For samples 49lipid and 97lipid,
the improvements are
visually more subtle, having a slight shift to the left as well as a
narrowing and smoothing of
the RSD distribution. The narrowing of the
distribution is detected in the change of the standard deviations (SD)
of
the RSDs, however. Part of this visual subtlety is likely due to the
bi-modality of these two distributions. This is not
surprising, since
these two samples are non-polar extractions from tissue and are
biochemically more complex.
Table 1 provides more quantitative metrics.
At two decimal places, the filtersd, doublenorm, and singlenorm
processing methods give superior and nearly identical results for three
of the four samples, especially in terms of
mean and median RSD.
However, for sample 1ecf, the max RSD is much higher for singlenorm,
highlighting its
instability.

Figure 11. Density plots for relative standard
deviations (RSD) of peak heights across scans for each of the
processing
methods. A peak was required to be present in at least three scans for
the RSD value to be reported.

Table 1. RSD means, standard deviations (sd), medians, modes, and
maximum observed values for each sample
with different overall
processing.

sample processed mean sd median mode1 mode2 max

1ecf filtersd 0.26 0.09 0.25 0.26 1.37

1ecf doublenorm 0.26 0.09 0.26 0.26 1.37



sample processed mean sd median mode1 mode2 max

1ecf singlenorm_int 0.26 0.10 0.26 0.26 1.41

1ecf singlenorm 0.26 0.10 0.25 0.28 1.43

1ecf perc99_nonorm 0.31 0.12 0.31 0.32 1.19

1ecf noperc_nonorm 0.31 0.12 0.30 0.32 1.19

1ecf msnbase_only 0.37 0.14 0.36 0.35 1.19

2ecf filtersd 0.26 0.09 0.26 0.27 1.01

2ecf doublenorm 0.27 0.10 0.26 0.27 1.05

2ecf singlenorm_int 0.27 0.10 0.26 0.27 1.05

2ecf singlenorm 0.26 0.10 0.26 0.27 1.03

2ecf perc99_nonorm 0.26 0.11 0.26 0.28 1.08

2ecf noperc_nonorm 0.26 0.11 0.26 0.29 1.08

2ecf msnbase_only 0.29 0.11 0.29 0.30 0.99

49lipid filtersd 0.25 0.13 0.23 0.20 0.37 1.13

49lipid doublenorm 0.25 0.14 0.23 0.19 0.37 1.13

49lipid singlenorm_int 0.25 0.14 0.23 0.20 0.37 1.13

49lipid singlenorm 0.25 0.14 0.23 0.19 0.37 1.13

49lipid perc99_nonorm 0.27 0.15 0.25 0.16 0.23 1.13

49lipid noperc_nonorm 0.27 0.15 0.25 0.16 0.23 1.13

49lipid msnbase_only 0.26 0.15 0.22 0.14 0.42 1.14

97lipid filtersd 0.24 0.14 0.20 0.16 0.41 2.05

97lipid doublenorm 0.24 0.15 0.20 0.15 0.41 2.05

97lipid singlenorm_int 0.24 0.15 0.20 0.16 0.41 2.05

97lipid singlenorm 0.24 0.15 0.20 0.15 0.41 2.04

97lipid perc99_nonorm 0.23 0.14 0.19 0.15 0.41 2.03

97lipid noperc_nonorm 0.23 0.14 0.19 0.15 0.41 2.03

97lipid msnbase_only 0.34 0.20 0.30 0.19 0.43 1.94

The 97lipid filtersd RSD distribution (as well as others) is
bi-modal. Figure 12 plots each peak RSD as a function of
the mean
intensity across scans, for every peak present in at least three scans
(top), or the peaks present in at
least 80% of the scans (bottom). At
least part of the bi-modality in the RSD distribution appears to be
related to
this dependence of RSD on intensity, as well as truncation as
peaks appear in fewer scans. This is supported by
part of the
distribution disappearing when we require that peaks be in at least 80%
of the available scans
(difference between Figure 12 top and
bottom).



Figure 12. RSD as a function of the log-mean peak
intensity for the filtersd method peaks from the 97lipid sample.
A shows all peaks in at least three scans using raw
height; B shows peaks that were present in at least 80%
of the
scans; and C shows all peaks in at least three
scans using the corrected height.

We can remove a majority of the bi-modality by only examining those
peaks with a Log10(mean) intensity ≥ 5.
Figure S2 and Table S2 show how
the RSD distributions change for each sample when only the peaks with
Log10(mean) intensity ≥ 5 are used. The distributions are all shifted to
lower RSD; however, the overall trends in
RSD are the same.



Figure 12 also provides information about the sources of variance or
error in the FT-MS measurements. These
trends or RSD with intensity (and
SD with intensity, see Figure S3) imply both a constant, baseline
additive error
component that is independent of intensity, and a
proportional error component where the variance increases with
intensity. When the intensity is log-transformed, this additive
component becomes a dispersive variance
component. In addition, there is
an unusual boot-shaped curve at the lower log mean intensities,
representing left-
censorship (truncation) effects due to detection
limits.

2.9. Difference to Relative Natural Abundance
As an alternative to RSD, we can also compare the fit of relative
intensities after assignment using SMIRFE [6] to
the theoretical relative natural
abundances (relNAP) of the assigned isotopic molecular formulas (IMFs)
within the
assigned elemental molecular formulas (EMFs). Theoretically,
we expect lower quality data to have both lower
numbers of assignments,
and for those things that are assigned, the fit between relative
intensity and relNAP to be
worse. To compare relative NAP to relative
abundances, we only examined the assignments from the two samples
containing ECF derivatized amino-acids, as we can limit the assignments
to those that match expected
derivatizations of the known amino-acids
(see Supplemental for the expected EMFs, and expected relative NAPs
for
the individual IMFs).

Figure 13 compares the peak-to-peak isotopic natural abundance
probability and height log-ratio differences
(Equation 4 in Methods)
generated using heights from Xcalibur and from our scan-centric peak
characterization.
From this figure, it is clear that inconsistency in
peak presence across scans leads to larger deviations between
measured
peak heights from aggregate spectra and expected relNAP.

Figure 13. A. The peak-to-peak NAP
- intensity log differences from scan-centric peak heights (red) and
Xcalibur
peak heights (blue) from the ECF derivatized threonine amino
acid assignments with Na adduct, with point size
reflecting how many
peaks were missing across scans. B. The difference in
Xcalibur to scan-centric ratios plotted
directly as a function of the
number of scans the peak was not found in. C. The
differences in Xcalibur to scan-
centric ratios for all of the amino acid
assignments in EMFs with more than a single peak in both ECF
samples.

Although we expected that the corrected scan-centric intensities
would behave similarly or better compared to the
raw intensities, Figure
S4 shows that while they have smaller differences than Xcalibur, there
is still a trend of
increasing difference with the raw scan-centric
intensity - NAP ratios as the number of missing scans increases.



2.10. Method Specific Peaks
Each set of peaks generated may or may not be specific to the
particular method used to generate centroided
peak m/z and
intensities. This is true for the different scan-centric combinations,
as well as the peaks from
Xcalibur and MSnbase. Here we examine the
overlap of the unassigned (Figure 14) and assigned peaks from the
full
scan-centric processing with Xcalibur and MSnbase. These same counts are
also summarized in Table 2 and
Table 3. In these two examples, there are
some striking differences. The 1ecf sample has all of the scan-centric
peaks shared with either Xcalibur or MSnbase peaks, whereas the 97lipid
sample has 2/3 of the peaks specific to
scan-centric characterization
and not matched to either of the other methods. Notably, for both
samples, the scan-
centric characterization produces similar numbers of
peaks, even though the upper mass limit in 1ecf is 1000 m/z
compared to 1600 m/z for the 97lipid sample, whereas the number
of peaks from MSnbase and Xcalibur are three-
fold and 40-fold higher in
the 1ecf sample compared to the 97lipid sample.

Figure 15 shows the distribution of differences between the observed
and expected m/z of assigned peaks in the
1ecf and 97lipid
spectra. For the 1ecf-specific histograms, it is clear that these
differences have a narrower
unimodal distribution from the scan-centric
peak characterization, especially in comparison to MSnbase. In
addition,
the MSnbase distribution has far fewer peaks that match a scan-level
assigned peak. Given the large
number of MSnbase-characterized peaks
present in the spectrum, many peaks may be outside the matching
tolerance of 2 ppm. This strongly implies that the peak center error is
far higher in the MSnbase-characterized
peaks than what the histogram
directly shows. For the 97lipid-specific histograms, again the
difference distribution
for the scan-centric peak characterization is
narrower, but the improvement is not as pronounced, likely due to the
distribution being bi-modal. Moreover, far fewer Xcalibur and MSnbase
characterized peaks matched assigned
scan-centric peaks. Again, this
strongly implies that their peak centers have far higher error. When we
matched
assigned peaks across the NSCLC samples for examination of
changes in p-values (see Changes in P-Values
On a Large
Dataset), the standard deviation of the peak locations in
frequency space was 0.5 (results not shown).

Figure 14. UpSet plot with the counts of common and
specific peaks without consideration of assignments for
each of
scancentric, MSnbase and Xcalibur generated peaks for the 1ecf
(A) and 97lipid (B) samples. The black
points with connected vertical lines identify which set intersections
are represented in the bar at the top. A single
black point identifies
what was specific to the set and not in any other sets.



Table 2. Number of matched peaks between peak processing methods for
1ecf. There are no overlapping peaks
only between scancentric and
msnbase, as well as no peaks found only by the scancentric method.

method set_sizes

scancentric x x 2937

xcalibur x x x 68244

msnbase x x 10330

comb_sizes 778 2159 65307 9552

Table 3. Number of matched peaks between peak processing methods for
97lipid.

method set_sizes

scancentric x x x x 2405

xcalibur x x x 1747

msnbase x x x 3263

comb_sizes 448 502 472 983 797 2343



Figure 15. Histograms of the differences between
observed and expected m/z values for assigned peaks in the
1ecf
(left) and 97lipid (right) spectra,
measured in parts-per-million (ppm) respectively. Inset plots are scaled
to
the maximum counts observed for the particular method.

2.11. Changes in P-Values On a Large Dataset
For large datasets, we expect that more correct peak intensities will
result in better agreement between sample
normalized peak intensities
within a sample class. One way to test this is to compare p-values
generated from the
different intensities. Figure 16 compares the -1 *
Log10(p-values) from 373 (corrected and Xcalibur) or 87
(MSnbase)
isotope resolved molecular formulas (IMFs) assigned by SMIRFE for the
scan-centric peaks and then
peaks matched and intensities extracted from
the other methods. Although all of the p-values are somewhat (and
statistically) different from those reported by the raw intensities,
there are some interesting patterns of differences.
MSnbase generated
p-values show the widest distribution of differences, as well as the
smallest number of peaks
that are present in 50% of both the cancer and
non-cancer samples. This echoes the patterns of low overlapping
assigned
peaks observed in both ECF samples, where many of the scan-centric
amino-acid peaks only found one
match from the MSnbase peaks.
Surprisingly, the truncated log-normal distribution corrected
intensities generated
very different p-values compared to the raw
intensities, and Xcalibur showed the most agreement with the raw
p-
values. We tested the statistical significance of these differences
using a t-test of the actual difference in log-p-
values (shown in Figure
16D). It is clear that the raw scan-centric intensities are
superior.



Figure 16. A - C: Log-p-values
generated by comparing non-cancer and cancer sample IMFs using peak
intensities from different methods. Red line denotes perfect agreement.
D: Sina plot of differences in the log-p-
values
generated by different methods compared to the raw scan-centric
log-p-values. The Bonferroni adjusted p-
values from a t-test of the
log-p-value differences for each method are also shown. Green points
denote the high,
mean, and low-confidence limits reported from the
t-test.

It is vitally important however, to normalize the intensities
correctly. Figure S5 of the Supplemental Materials shows
that with the
incorrect normalization, the corrected and raw p-values become much
closer to each other.

2.12. Quality Control and Quality Analysis



Having a scan-centric workflow for generating the peak centroids
means that we have opportunities to evaluate
the scans as a whole, as
well as the peaks across scans. For example, we can mark peaks with
unusually high
frequency standard deviations (FSD) and mitigate the
presence of high-peak-density artifacts (see Mitigation of
High
Peak Density Artifacts). We also sometimes find that from the
initial peak region that has been marked as a
single region, it still
results in two peaks being characterized in a single scan. This results
in that peak being
removed from that scan entirely.

The conversion of m/z to frequency also provides
opportunities to evaluate each scan and whether it should be
kept for
further processing. Checks that have helped us in the development of the
scan-centric peak
characterization have included: (a) verifying that the
ordering of data points remains identical in m/z and frequency
space after conversion to frequency; and (b) examining the R 
fit of the predicted frequency points to the original
frequency points
across scans for outliers. A third quality control step is to examine
the coefficients of the square-
root term for each scan (see term
y in Equation 1) and look for any outliers, and remove
them before continuing
the sample processing. Across the 169 NSCLC raw
files that completed scan-centric processing, 105 had at least
one scan
removed based on the square-root coefficient. Figure 17A shows a
histogram of the number of scans
removed based on being outliers of the
overall distribution. Figure 17B shows what outlier scan coefficients
look
like in a single sample.

Figure 17. A: Number of scan
outliers for each sample in the NSCLC dataset. B:
Single example for sample
199Cpos of the scan square-root terms, with
outliers marked and removed from further consideration.
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A final check we implemented in the conversion to frequency was
verifying that the range of frequency point-point
differences allowed
for creating the m/z to frequency model are the same across
scans. The initial set of scans we
started with included
all of the MS1 scans, including the precursor scans for
the MS2 scans. However, the
samples were acquired as a mix of MS1 only
scans for the first 7.5 min, and then a mix of MS1 precursor scans
followed by MS2 scans for the second 7.5 min. In 20 samples, the MS1
precursor scans have a different resolution
than the MS1 main scans, as
shown in Figure 18. This is easy to detect by differences in the
square-root
coefficients, but due to using a single frequency model for
converting all scans actually manifested as different
modes in the point-point frequency differences. Oddly enough, the check
for outlier scans discussed previously,
does not flag any of the scans
as outliers in this case. Ultimately, we were able to resolve this
anomaly by only
using those scans with an injection time before 7.5 min.
In the future, the package will be updated to check that the
resolution
is the same across the scans, and produce an informative error for the
end user before quitting.

Figure 18. Scan-level total ion chromatogram (TIC)
plot noting the square-root coefficient for each scan, where the
coefficient is reflective of the resolution used for each scan. The
y-axis is cropped to 2x10  so that the MS1
precursor scans
are visible, as their TIC’s are much smaller than the others.

Finally, in the scan-scan normalization step, we require that there
be at least 25 peaks in each of the scans that
can be used to calculate
normalization factors between the scans and the reference scan. If there
are no scans
with at least 25 peaks, then the processing of that sample
will error and stop.

3. Discussion

7



FT-MS direct-injection data provide spectral scans; however, unlike
nuclear magnetic resonance, these spectral
scans are not identical, due
to several instrumentation issues. Therefore, simple scan summation or
averaging to
an aggregate spectrum followed by peak characterization
does not provide optimal data. Additionally, this
approach prevents the
calculation of useful peak-specific statistics, especially variances,
both in m/z and intensity.
In the results presented, we
demonstrate superior performance by scan-centric peak characterization
in terms of:
(a) improved QC/QA that removes low quality scans; (b)
intensity independent noise reduction that pragmatically
eliminates HPD
sites; (c) improved peak height relative standard deviations; (d)
improved peak intensity ratios that
better match natural abundance
probabilities; and (e) better separation between biological groups.
These
improvements are necessary for downstream derivation of molecular
formula by SMIRFE using spectrum-derived
tolerances, an efficient
m/z search of a large isotope-resolved cache, and filtering by
peak ratio matching to NAP.
However, scan-centric peak characterization
requires a sophisticated pipeline of QC/QA and processing steps to
derive a superior characterization with informative statistics and QC/QA
metrics. Years of methods development,
testing, and optimization have
gone into the methods presented here. Nevertheless, once implemented,
large
datasets can be processed in a straightforward manner that
supports full computational reproducibility. We also
kept all steps that
provided a demonstrable improvement, no matter how small that
improvement was, but the
following steps provided the most improvement:
(a) noise removal by non-zero point density, (b) scan
normalization
using median peak intensity differences, and (c) removal of outlier
scans. However, both steps a and
c require the m/z to frequency
regression model. In the end, it is the combination of steps that
synergistically
provide the presented superior peak characterization
results. We note that the non-zero point density based noise
removal is
particularly useful, as the peak intensities from scan to scan are not
identical, which would possibly
hamper any kind of intensity-based noise
removal.

Not all of the methods presented here provided an improvement. We
included our negative results with correcting
mean and standard
deviations for the intensity of peaks not detected in all scans, so that
others do not waste effort
pursuing this. We initially expected the data
to follow a truncated log-normal distribution, since Figure 12 clearly
demonstrates truncation effects; however, upon further contemplation of
the results presented here, we believe
that the differences between
scans still present after normalization imparts a dispersive variance
component.
Moreover, Figure 12 (and Figure S3) demonstrates the presence
of an additive error component that will become
dispersive after
log-transformation. Thus, we hypothesize that a truncated negative
binomial distribution may
better represent the intensity of peaks not
detected across all scans. Fortunately, this distribution has been
previously studied [23] and we plan to
explore this possibility for a future improvement to our methods.
However,
correction may not be straightforward and it is unclear if it
is better to apply the correction to the raw or log-
transformed peak
height data. Either way, a dispersive variance component is present and
must be accounted for.
As illustrated in Figure 12, there are low
intensity peaks that are observed across the majority of the scans. This
likely indicates that the loss of peak detection involves other factors
that are increased at low intensity. We theorize
that any factor that
increases signal decoherence, such as ion-cloud repulsion would increase
the peak flooring
performed by the instrument. Therefore, access to the
scan level peak intensity information as provided by the
methods
presented here facilitates the inference of sources and types of error
present in the measurements, which
we believe have been previously
under-described and is required for future data processing
improvements.

4. Materials and Methods
4.1. Samples and Overall Processing
Two different sets of samples were used to evaluate the various
methods, ethylchloroformate (ECF) derived amino
acid samples described
in [6] and non-small-cell-lung-carcinoma
(NSCLC) lipid-extracted tissue samples
described in [20].



The method for generating the amino-acid samples was adapted from a
previously published method for
performing ECF amino acid derivatization
[9]. Two replicate samples were prepared
and spectra were obtained for
both samples using a Tribrid Fusion
Orbitrap at 500k resolution and a mass range of 150 to
1000m/z.

The collection, preparation, and mass spectrometry analysis of the
paired cancer and non-cancer samples has
been previously described [14]. In summary, cancer and nearby non-cancer
tissue samples were acquired from
eight-six non-diabetic patients with
suspected resectable stage I or IIA non-small cell lung cancer. Written
informed
consent was collected from all subjects prior to inclusion and
all samples were collected under a University of
Louisville or
University of Kentucky IRB protocol. Lipid extracts were prepared using
a modified Folch extraction
and reconstituted for direct infusion
ultra-high resolution mass spectrometry on a pair of Thermo-Fisher
Tribrid
Fusion Orbitrap instruments coupled to an Advion
nanoelectrospray system. Two of the cancer lipid samples
(49Cpos and
97Cpos) were used for the majority of examples in this manuscript. The
rest were included for the
examination of changes in differential
analysis p-values using different peak source intensities (see
Differential
Analysis of Large Dataset).

For each of the two ECF and two lipid samples, the raw data file was
converted to profile mzML format. Only the
MS1 scans were used, and the
scan-scan time difference had to be ≥ 4 s, and for the lipid samples
only scans
acquired before 450 s (7.5 min) were kept. The scan-centric
data were then processed in the following eight ways:

No noise removal, no normalization (noperc_nonorm);

Noise removal, no normalization (perc99_nonorm);

Noise removal, single-pass normalization with all peaks
(singlenorm);

Noise removal, single-pass normalization with high ratio peaks
(singlenorm_int);

Noise removal, two-pass normalization (doublenorm);

Noise removal, two-pass normalization (filtersd);

Scans merged and then centroids generated by MSnbase (using
 combineSpectra  and pickPeaks );

Scans merged and peak-list exported by Xcalibur.

4.2. Matching Peaks
To associate the Xcalibur and MSnbase peaks with the scan-centric
peaks, a 4 ppm (2 ppm low and high) window
is calculated for the
scan-centric centroid, and if any peaks are found within the window, the
one with the smallest
m/z difference is kept as the matching
peak to the scan-centric one under consideration.

4.3. Conversion of m/z to Frequency
The input data consist of profile mode m/z spectra from
multiple scans encoded as m/z and intensity values for
each
scan. No information about the original observed frequency values is
available in either the raw  files or the
mzML 
files. However, proxy frequency values can be generated by averaging the
m/z of adjacent points and

dividing them by the m/z difference.
Ideally, the difference between subsequent points in this proxy
frequency
space is constant, in practice there is a range of differences
in frequency space. The actual, constant difference
can be
obtained by examining the median of the calculated frequency
differences, and then constraining useful
points (those that
can be used for generating a model of frequency to m/z) to be
within 2% of the mode value.
These useful points can be used to
construct a linear model relating m/z to frequency for
individual scans based
on the formula:



From the known physical properties of the Orbitrap, only the
square-root term should be necessary [24].
Practically, we found the combination of no root, square and cube-roots
to provide a better fit when processing
data from the Thermo-Fisher
Fusion instrument, likely due to issues with slight imperfections in the
orbitrap
geometry, contributions from space charge effects and
magnetronic motion, control of the magnetic fields, and the
Fourier-like
transform conversion used by the spectrometer. We do note that when
working with Bruker SolariX
ICR data, the equation is slightly
different, and does not require the cubic square root term (unpublished
results,
see Supplemental Materials). A frequency model was generated
for each scan, followed by a single model using
the scan with the
square-root term closest to the median of the square-root terms from all
scans. We observed that
this single model better preserved the relative
ordering of the peaks in both m/z and frequency-space compared
to
the scan specific models (see Results).

To convert m/z back into frequency, we can use a similar
model without the roots, as well as an extra simple linear
term that
does not have an equivalent in the above frequency model.

4.4. Frequency Intervals
Two types of frequency intervals were used; sliding and tiled
windows. In this work, the sliding windows are the
equivalent of 10
frequency points wide with a stride of one point. The tiled windows are
one point wide with a stride
of one point. Each point
above is the equivalent of the difference between data points in
frequency space, which
in these samples have a spacing of 0.5.

4.5. Interval Range Based Data
To enable interval algebra, the frequency points are converted to
single width intervals by multiplying by a constant
factor to maintain
the differences in individual points (a multiplier of 400 in this work),
rounding to the nearest
integer, and storing them as IRanges objects
from the IRanges Bioconductor package [25]. The sliding and tiled
windows are also
converted to IRanges objects using this process.

4.6. Peak Containing Intervals
To find intervals that contain points that represent actual signal
and not just random noise, the number of non-zero
intensity points in
each sliding window were counted. Subsequently, we broke these counts
into fixed width tiles
(default width of 1000 in frequency space) and
calculated the cumulative 99  percentile of non-zero points
for
each tile. The rounded up median value x 1.5 of these
99  percentile values from the fixed width tiles were used
as the cutoff value to determine which of the initial sliding regions
should be kept as regions containing potential
signal. Any sliding
window with a non-zero count less than or equal to the cutoff value is
removed, and the
remaining sliding windows are kept and overlapping
sliding windows are merged to create the initial peak regions.
The
presence of zero intensity points in these Thermo-Fisher Orbitrap
spectra are primarily due to flooring
implemented by the spectrometer
when local spectral quality falls below a certain threshold. When this
flooring is
unstable and incomplete, a partial ringing phenomenon is
observed [18].

Within each initial interval region, peaks in each scan are detected
(see Peak Detection and Centroided Values),
and their
centers are binned by the tiled windows. Adjacent tiled windows with
non-zero peak counts are merged
together, and any zero peak count tiled
windows split the initial region into multiple peak interval regions.
These
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interval regions should contain a single real
peak that was detected in one or more scans.

4.7. Peak Detection and Centroided Values
On a single scan level, possible peaks are detected by simple
bump-hunting for two increasing points followed by
two decreasing points
using the find_peaks  function in the pracma package [26]. These possible peaks are then
characterized using a weighted parabolic fit of log-intensity to
position (where position is either m/z or frequency),
and the
weights for each point are the relative log-intensity compared to the
maximum log-intensity for the peak.

From this weighted parabolic fit, the center, intensity, integrated
area, and sum-of-square residuals can be
extracted for the peak. The
center and intensity from this model are equivalent to the centroided
peak center and
intensity.

Before further processing, each region is verified to have only one
peak from each scan. If a scan has two or more
peaks in a region, then
the scan level data in that region is discarded. Any regions that
subsequently contain zero
peaks are removed.

4.8. Scan to Scan Normalization
Scans are normalized to a single reference scan based on the
log-intensity differences in a subset of peaks
present in at least the
same number of scans as the 95th percentile of scan counts for the
peaks. In addition, only
those peaks with an intensity greater than 0.7
times the highest intensity peak in the scan are used. Pairwise
scan-
to-scan distances are calculated by taking the cartesian distances
between log peak intensities present in both
scans, and then the
cartesian distance is summed across the scan-to-scan distance to provide
an overall
difference in each scan to all other scans. The scan with the
lowest summed overall distance is chosen as the
reference scan
( ), and normalization
factors for each scan are calculated as the median log peak
intensity
differences in  compared to
the . This normalization
was carried out twice, once using all
possible peaks, after which the
correlation of peak intensity with scan order was checked, and those
peaks with
correlation of greater than 0.5 with scan order were removed,
and the normalization factors were calculated again,
and then applied to
both the centroided peak height and the raw point intensities. Peaks
correlated to scan order
represent an artifact that we speculate results
from a gradient in the sample well and are marked in the final
output.

4.9. Full Scan-Centric Characterization
The full set of raw data points for each peak in each scan within a
region is known based on the previously
detected peaks. Therefore, the
non-zero intensity, normalized raw data points across scans can be
combined, and
then characterized again using the weighted parabolic fit
method previously described. In addition to the data from
the full set
of raw points, the means and the standard deviations of the peak height
and location can be derived
from the scan-level peak characteristics
previously calculated.

In addition to these values, the frequency point-to-point median
difference was calculated across all of the raw
data points for those
points that could be used for modeling frequency to m/z, and
this difference of a single point
from the peak center is calculated in
frequency space, and converted to m/z space to provide an
“offset” value that
is potentially useful to define the search space
around the peak for any assignment algorithm.

4.10. Correction of Height and Standard Deviation

ln(intensity) = a + x × position + y × position2 (3)

scanref

scani scanref



Ideally, each peak would be observed in every scan. However, some
peaks are not observed in some scans due
to the number of ions falling
below the detection threshold, or being excluded after filling the trap.
This should
result in a left-censored log-normal distribution of peak
intensities across equivalent scans, which is expected for
analytical
measurements with detection limits [27].
To correct these, either a correction based on a model of the
truncated
normal distribution can be used on log-transformed data, or the
differences can be simulated by
sampling from data that is present in
most of the scans. To simulate the effect of peaks missing from some
scans
on the standard deviations, the peaks present in all scans were
used. For each peak, a sample of the heights
across scans was obtained
(ranging from 5% to 95% of scans), and a new standard deviation was
calculated for
that fraction, and a ratio of the fractional standard
deviation to the “true” standard deviation was calculated. The
ratio
standard deviation across peaks can then be fitted to a cubic model of
the fraction used, and a correction
factor predicted for those peaks
that are present in fewer scans. Our correction uses log-transformed
peak
heights, and differences instead of raw heights and ratios directly
to make some of the calculations easier. The
corrected standard
deviations can then be used to correct the mean height assuming that it
is the result of a left-
censored normal distribution [28,29].

4.11. Marking High Frequency Standard Deviation Peaks
High-peak-density (HPD) artifacts [18]
present as groups of singular peaks with higher than expected frequency
standard deviations (FSDs) calculated from the scan-to-scan frequency
peak locations. Outliers are detected by
calculating the interquartile
range (IQR) of the distribution of FSDs across the entire spectrum, and
peaks with
FSDs greater than the median plus 1.5 times the IQR (as
implemented in boxplot.stats) are marked. The HPD
detection algorithm
from Mitchell et al. [18] was
re-implemented in R for this work to allow comparisons between it
and
the use of the FSD. For HPD detection, the peaks in excel output from
Xcalibur were used after converting the
m/z peak centers into
frequency space. Sliding windows that are 1000 frequency points wide
with a stride of 100
points were used for the density calculations.

4.12. Calculation of Relative Standard Deviation
For consistency across both the various scan-centric centroiding and
MSnbase, the scan level Log10 heights were
converted to raw heights, and
then averages and standard deviations calculated across scans, removing
missing
values. Relative standard deviation (RSD) was calculated as
standard deviation divided by the mean for each
peak. The number of
scans a peak was present in was also noted, as well as the percentage of
total scans. Only
peaks present in at least three scans were kept for
analysis of the RSD.

Modes of the RSD were calculated starting from a density
approximation of the distribution using default settings in
the density
function of the R stats package. Peaks from the density approximation
were determined with the
find_peaks function in the pracma package. Up
to two modes are reported from low to high RSD along the
distribution:
(i) the most intense peak; (ii) the next most intense peak if it is ≥
0.2X the most intense peak.

4.13. Scan-Centric Peak Assignment
Our previously described SMIRFE algorithm [6] was used to assign molecular formulas to
scan-centric
characterized peaks in an untargeted manner. For the lipid
samples, an initial EMF database was generated using
an m/z
limit of 1605 m/z, and maximum numbers for each element were
set to C: 130, N: 7, O: 28, P: 3, H: 230.
Assigned formulas were allowed
to have K , Na , H , and
NH4  adducts (only positive mode samples were
assigned).
Assigned molecular formulas were then classified into one or more lipid
categories using our lipid
classifier tool [19]. For the ECF derivatized amino-acid
samples, the EMF database was generated using an m/z
limit of
1005 m/z, and maximum numbers for each element were set to C:
100, N: 7, O: 40, H: 230, P: 3, S: 3. N
labeling was
included in the database generation. Assigned formulas were allowed to
have H  and Na  adducts.

+ + + +
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We attempted to create peaks that could be assigned by SMIRFE from
the MSnbase and Xcalibur peak lists, but
SMIRFE would not assign them
given its requirements for scan-centric peak characterization data that
includes
variance.

4.14. Consistently Assigned Lipid Spectral Feature (Corresponded
Peak) Generation and Peak Intensity Normalization
Our SMIRFE assignment method assigns isotope-resolved molecular
formulas (IMFs) to characterized peaks in
each spectrum. Each IMF
represents an isotopologue of a given elemental molecular formula (EMF)
(e.g.,
13C112C51H1216O6 is an IMF representing the m+13C1 isotopologue
of EMF C6H12O6). Consistently assigned
formulas (i.e., corresponded
peaks) were identified using an in-house method we have named EMF
voting.

Elemental molecular formula (EMF) voting was used to match peaks
across samples and determine the most
likely assignments from SMIRFE.
First, for each sample, the assignments were extracted, filtered, and
scored. Any
assignments that contained only peaks that were marked as
being questionable (high FSD or correlated with scan
number) were
removed. Scores are calculated as 1 – E-value, and for the lipids, EMFs
that were classified as
lipids had their score multiplied by 2.

For each sample, peaks were grouped to a sample-specific EMF by
determining the list of shared EMFs across a
group of peaks
(grouped_EMF). Scores for each formula in the grouped_EMF in the sample
were obtained as the
best score for that formula from available scores
in the group. After all sample grouped_EMFs are generated,
additional
scores for a formula are considered in actual voting by looking for the
same unadducted base EMF with
different adducts and adding these scores
into the final total score.

The pseudo_EMFs are collections of grouped_EMFs across samples. They
were generated across samples by
iteratively merging grouped_EMFs with
shared formulas, creating a new list of formulas in an EMF, and merging
any pseudo_EMFs that have shared formulas again.

For each pseudo_EMFs, the most likely formulas are determined by
voting. Voting uses the sum of EMF scores
across samples, including
those from the same formula with a different adduct. Those formulas with
a total score
in the top 90% of all total scores were considered
“winning” formulas and kept as the “voted formula” set. Any
peaks that
did not originally have a “voted formula” were then checked to see if
the peak location was within
previously defined tolerance, and if the
ordered peak intensities for the set of peaks from a sample are in the
same
order as the natural abundance probabilities of IMFs for the voted
EMF. If so, then the peaks are kept as having
the “voted formula”
set.

After voting, all of the peaks were checked to make sure that the
peak locations are within previously defined m/z
specific
cutoffs. Any peak outside of its specific cutoff were removed.

Finally, those pseudo_EMFs that share greater than 50% of their peaks
are merged together, and voting on the
EMFs is performed again.

Peak locations from our custom data processing pipeline are reported
both in m/z and frequency, which are
derived from the
m/z values. The frequency values are more reliable (i.e., more
consistent with less variance), but
differ between instruments.
Therefore, for each set of samples from a particular instrument, we use
high
confidence assignments (e-value <= 0.1, m/z <= 600)
to derive a frequency cutoff using the mode of the
distribution of
frequency standard deviations across both groups of samples. This
frequency cutoff is used to do
EMF voting within an instrument. The
m/z standard deviations of the voted peaks are then fit to
m/z using a
generalized additive model, and the standard
deviation of the predicted m/z values are multiplied by 2 to
derive an
m/z cutoff so that voting can be performed across the
instruments.



EMF voting identified 3529 total corresponded peaks across all 165
spectra. All lipid isotopologue intensities were
normalized by dividing
the isotopologue intensity by the median intensity of all the peaks in
the sample.

4.15. Peak - Peak NAP Height Ratios
Each pair of peaks in a specifically labeled and adducted elemental
molecular formula are related by their natural
abundance probability
(NAP). Theoretically, the log-ratios of two peaks NAPs are approximately
equal to the log-
ratios of two peaks intensities.

SMIRFE assignments include the NAP for each of the isotopologue
molecular formulas (IMFs) in the particular
labeled and adducted EMF.
For each peak pair in the peak group for a particular EMF, we calculated
the log-ratio
for the NAPs and the log-ratio for the intensities, and
their absolute differences. This calculation is done for the
final
characterized intensity, as well as the intensities at the scan level,
and for both the raw intensity and corrected
intensity, and for matched Xcalibur peak intensities, and matched
MSnbase peak intensities if there were two or
more matching peaks in the
labeled, adducted EMF.

4.16. Differential Analysis of Large Dataset
To compare p-value changes in a large multi-class sample dataset, we
used the full set of NSCLC lipid samples
described earlier. We started
with the 181 matched non-cancer and cancer samples previously used for
HPD
detection and lipidomics of non-small-cell-lung-cancer (NSCLC) [18,20]. All samples were characterized using
the
full scan-centric workflow, assigned using SMIRFE (see
Scan-Centric Peak Assignments), and then peaks
matched
by shared EMFs across samples (see Consistently Assigned Lipid
Spectral Feature (Corresponded
Peak) Generation and Peak Intensity
Normalization). After extraction of the scan-centric IMF peak
locations
across all samples, Xcalibur and MSnbase peaks were matched
within each sample, and locations and intensities
extracted.

Of the starting 181 samples, 12 did not finish during scan-centric
peak characterization for various reasons,
leaving 169. In addition,
some of the samples were acquired multiple times, creating duplicate
samples. Not
knowing which sample run was most appropriate to use, we
removed all of the duplicated samples. Using
information-content-informed Kendall-tau correlation (ICI-Kt) [27], we compared the median correlations of
each
sample to all others in the same disease class for outliers, and
removed 5 cancer and 5 non-cancer samples. The
median ICI-Kt
correlations are shown in Figure S6.

Each sample intensity was normalized by dividing by the median
intensities from that sample and intensity
method. Only those peaks
present in 50% of both the non-cancer and cancer samples were kept for
differential
analysis. This resulted in 373 IMF peaks for differential
analysis. Differential analysis used the logged intensity
values, with
p-values calculated using rowttests  function from the
 genefilter  Bioconductor package
(v1.76.0) [30], removing any missing values before
calculation. P-values were adjusted using the Benjamini-
Hochberg method
in the p.adjust function from the base R stats package (v4.1.0) [31].

For comparisons across peak sources, we converted both the raw
p-values to log-p-values by calculating -1 *
Log10(p-value). The
reference peak p-value is the raw scan-centric p-values.

4.17. Software Used
Thermo-Fisher Xcalibur was used to export peak lists from all samples
used. SMIRFE v 1.0 [6] running under
Python 3.8 [32] was used for assignments.
Lipid classifications were generated by LipidClassifier v 1.0 [19]. All
other calculations were performed in R
v 4.1.0 [31]. The targets package v 0.10.0
was used to control processing

ln(NA /NA ) − ln(In /In ) ≈ 0PP1 PP2 tP1 tP2 (4)
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and aggregation of results [33], and renv v 0.15.3 [34] to create a reproducible R package
environment. Plots were
generated using ggplot2 v 3.3.5 [35], patchwork v 1.1.1 [36], ComplexHeatmap v 2.10.0 [37], ggridges v 0.5.3 [38],
and ggforce v 0.3.3 [39]. MSnbase v 2.20.4 [40,41] provided facilities for reading in
scan-level data, merging scans
and calculating centroided peaks. ICI-Kt
correlation values among lipid samples were calculated using
ICIKendallTau v 0.1.16 [27]. Outlier lipid
samples were determined using visualizationQualityControl v 0.4.7 [42].
Specific data manipulation facilities were
provided by dplyr v 1.0.8 [43], tidyr v
1.2.0 [44], furrr v 0.2.3 [45]. This
manuscript was generated from
rmarkdown v 2.11 [46–48].
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